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Purpose: To investigate whether preseason training plans for Australian football can be computer generated using current
training-load guidelines to optimize injury-risk reduction and performance improvement. Methods: A constrained optimization
problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a
template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered
optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to
reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to
generate preseason training plans. Results: The optimization framework was able to generate training plans that satisfied relative
and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to
prescribe higher amounts of “safe” training and attain higher projected performance levels. Simulations showed that using a
Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize
projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was
prescribed to accumulate as much load as possible. Conclusions: Feasible training plans that maximize projected performance
and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The
optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and
different training-load metrics.
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Training-load prescription in team-sport athletes is a balance
between performance improvement1,2 and injury-risk reduc-
tion.3–6 The manipulation of training intensity, duration, and
frequency to induce improvements in athletic performance is a
fundamental objective of training-plan prescription.7 To inform
this process, mathematical models of the relationship between
training loads and performance have been proposed for multiple
athletic populations.1,7,8 Banister et al1 modeled the response to a
training dose using 2 time-decaying functions representing fit-
ness and fatigue. This allowed performance to be projected at a
later time by taking the difference between the modeled fitness
and fatigue functions. While the accuracy of these models in
predicting performance has been limited,7,9 they provide a
generalized basis for training prescription. Studies modeling
team-sport performance are fewer, possibly due to difficulties
in quantifying individual performance in a team environment and
mixed training methods.

Training load has been identified as a risk factor for injury in
recent reviews, with both absolute and relative loads needing to be
considered when assessing injury risk.4,6 The acute:chronic work-
load ratio quantifies an athlete’s relative amount of short-term
(acute) to long-term (chronic) training and is an injury-risk factor
in a number of team sports.4–6,10 In addition, there is evidence
that cumulative absolute workloads can influence injury risk in
Australian football.3

Currently, physical-preparation staff are tasked with balancing
the training guidelines associated with injury-risk reduction and
performance improvement when prescribing training loads. Math-
ematical optimization is a method that may help in this process,
particularly as more data on training-load monitoring become
available.5,6,10–12 Optimization is the task of finding a set of values
(decision variables) that maximize an objective function (goal) and
satisfy a set of constraints. Optimizing training loads has been
explored in studies of tapering8 and to generate training plans for
performance improvement.13 No study has explored optimization
models that incorporate training guidelines for injury prevention
based on cumulative loads and workload ratios in team-sport
athletes.

This study aimed to determine the extent to which current
training-load guidelines (for relative and absolute training loads)
can be used to generate optimized preseason training plans in
Australian football and to investigate the effects of varying
optimization targets and load constraints on the computer-
generated plans.

Methods
The task of planning preseason training loads was posed as an
optimization problem. The decision variables were the amount of
training prescribed each day, and constraints were defined based
on recommended acute:chronic workload ratio and cumulative
load limits for injury-risk reduction.

The fixture for an elite Australian football club was used as
a template. Players were scheduled to play 3 practice matches 98,
104, and 112 days from the start of preseason and their first
competitive match on day 125. Outside of these matches, training
loads were able to be freely prescribed on each day.
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Decision Variables

The goal of the optimization procedure was to generate a full
preseason training plan by specifying the workload value (w)
each day:

wi = training load on day i; i ∈ f1; 2, : : : ,125g
In this study, total distance and sprint distance (SD) were explored
since most of the research to date has examined the relationship
between these variables and injury risk in team sport.3,5,10 How-
ever, in general, the workload variable could be substituted for
any method of training-load quantification.

For clarity, the following sections describe the complete
optimization formulation for total session distance and then present
the simple modifications needed to adapt the method to SD. This
illustrates how the methodology can be generalized to different
training-load representations.

Constraints

The optimization model required training plans to satisfy 5
constraints:

• Daily training loads were constrained to be 0 to 50,000 m
(a generous upper bound based on unpublished data from
previous seasons).

0 ≤ wi ≤ 50,000

• The acute:chronic workload ratio (r) was calculated on a daily
basis, using a 6-day acute and 24-day chronic time window,
found to be appropriate for this cohort.10

ri =
Xi − 1
j¼ i − 6

wj

6

� Xi − 1
j¼ i − 24

wj

24

Training plans were constrained to keep daily workload ratios
in the previously described “safe zone” for injury-risk reduc-
tion (0.6 < ri < 1.3).5,10

• Three-weekly cumulative distance loads of 73,721 to 86,662m
were reported to increase preseason injury risk in Australian
footballers (odds ratio 5.49).3 To account for this, a rolling
21-day cumulative load (Ci) was calculated and constrained to
not exceed 73,721 m.

Ci =
Xi − 1

j¼ i − 21

wj

Ci < 73,721

• Rest days (wi = 0) need to be considered when planning
training in professional team sport due to contractual entitle-
ments. Rest days were included by replicating the proposed
rest schedule at the football club. While it can be argued that
the timing of rest may be a component of designing an opti-
mal plan, considerations around public holidays, weekends,
and player requests were considered beyond the scope of
mathematical constraints.

• Match demands were taken from the 2015 AFL GPS Report14

and incorporated by constraining the total match distance to be
13,200 m (w125 = 13,200). This is an average value and may
not reflect the largest loads seen in matches or the differences
between playing positions. By increasing the match-demand

constraint the method can be adapted to prepare for higher
match loads.

Preseason matches in the AFL are subject to altered rules
that generally involve more interchange players and shorter
match durations. Unpublished data collected in the participating
club suggested that total distances covered were approximately
15% lower in preseason matches than in in-season matches
(w98,104,112 = 11,220).

Calculating cumulative workloads and acute:chronic work-
load ratios at the beginning of preseason requires knowledge of
off-season chronic loads. At the participating club, players are
generally given, and expected to follow, an off-season training
program but are not monitored with GPS devices due to league
restrictions. As such there is an inherent assumption that players
are completing their off-season training. Two levels of off-season
chronic load were considered (representing typically prescribed
loads): 14 km/wk and 21 km/wk.

Objective

Two objective functions (fA, fB) were considered. Objective A was
to maximize the total amount of training distance in the preseason,
representing the simple goal of allowing players to complete as
much training as possible without violating injury-risk constraints
(assumed desirable for team sports).

f AðwÞ =
X125
i¼ 1

wi

Objective B was to maximize the Banister-model1-projected per-
formance on match day. This objective was chosen as it included a
consideration of the fatiguing effects of training, as well as a
realistic goal of trying to maximize players’ preparation before
their first match. Banister-model parameters were adapted from a
study of middle-distance runners,15 as no such research has been
undertaken in Australian football.

pi = p0 þ k1
Xi − 1
j¼ 1

wje
−ði − jÞ
t1 − k2

Xi − 1
j¼ 1

wje
−ði − jÞ
t2

k1 = 1, k2 = 2, t1 = 45, t2 = 11

f BðwÞ = p125

Modifications for Sprint Distance

Adapting the optimization problem outlined herein to SD (defined
as the distance covered above 75% of an athlete’s recorded top
speed3) requires only a few parameter changes:

• The three-weekly cumulative load constraint was changed to
Ci < 1,453 to reflect findings on increased injury risk by
Colby et al.3

• Regular and preseason match demands were changed to 268 m
and 200 m of SD, respectively.3

• Off-season chronic loads were considered at 150 m/wk and
225 m/wk of SD to reflect levels typically prescribed by the
participating club.

These example values are taken from a study of 1 team and
may not represent the demands of other athletes. It is recommended
that constraints be tailored to suit team-specific demands when
adapting this methodology.
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Simulations

Training plans were initialized by random sampling from a normal
distribution: mean (standard deviation) = 3 km (1 km) and 30 m
(10 m) for distance and SD, respectively. Starting from the random
training plan, the optimization software sought to find a solution
that satisfied all the constraints and maximized the objective
function (see supplemental movie available online with this
article).

Optimization was performed using the MATLAB software
package (MATLAB 8.1, The MathWorks Inc, 2013, Natick, MA),
the nonlinear programming solver and the sequential quadratic
programming algorithm. Default step and function convergence
tolerances were used (10−6). Twenty simulations were run for dis-
tance and SD under each combination of objective and off-season
chronic load.

Results
The optimization approach produced solutions that were able to
satisfy both the acute:chronic workload ratio and cumulative
workload constraints. Each simulated preseason training program
converged to an optimal objective value within a similar number
of iterations (Figure 1), suggesting that the optimization-problem
formulation and the algorithms used were appropriate. Increasing
the off-season chronic-load parameter resulted in higher total
preseason training loads under optimization objective A (Figure 1
[a] and 1[c]) and higher projected performance under objective B
(Figure 1[b] and 1[d]).

The distribution of prescribed session distances and session
SD loads for each objective is shown in Figure 2. Each simulation
had slightly different distributions (ie, the lines in Figure 2 do not

perfectly overlap), meaning it was possible for the optimization
software to achieve the same objective value using slightly differ-
ent training plans. Changing the objective of the optimization
problem resulted in different load distributions in the generated
training plans. In general, plans constructed with the objective of
maximizing Banister-projected performance (objective B) pre-
scribed more short sessions (distance <5000 m and SD <100 m),
as well as more long sessions (distance ∼7000–11,000 m and
SD >100 m).

Sample preseason training plans (for distance and SD) gener-
ated by the optimization procedure are shown in Figure 3. Plans for
total session distance (Figure 3[a] and 3[b]) were generally similar
under the different objective functions. The longest prescribed
sessions were ∼15 km and scheduled approximately 30 days into
preseason. A notable difference was observed near the end of the
preseason before the first regular-season match. Plans aiming to
maximize total distance (Figure 3[a]) prescribed frequent training
up to and around matches, whereas those generated using the
Banister model refrained from prescribing any training in the 2 to
3 days preceding the first competitive match (Figure 3[b]). This
difference can likely by attributed to the fatigue component of the
Banister-objective function used. Refraining from training before
the first regular-season match allows for the fatigue component
to decay toward zero and the projected performance level to be
maximized.1

SD plans (Figure 3[c] and 3[d]) showed a different load
progression than that of distance plans. A gradual increase in
SD load was prescribed by the optimization software, with
maximal loads not reached until around 90 days into preseason.
Similar to distance plans, using the Banister model to guide
training led to a reduction in SD load leading into the first match
(Figure 3[d]).

0

A B

C D

Figure 1 — Convergence of 20 simulated preseason training plans for (a) distance under objective A, (b) distance under objective B, (c) sprint distance
(SD) under objective A, and (d) SD under objective B. Objective A is to maximize total preseason load; objective B is to maximize Banister-projected
performance at round 1.
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Discussion
This study aimed to determine whether training-load guidelines
could be used to generate optimized preseason training plans in
Australian football and how varying optimization targets and load
constraints influenced the computer-generated plans. The results
demonstrated that the total and SD distances across preseason
training programs could be generated using an optimization ap-
proach. Cumulative load and acute:chronic workload-ratio guide-
lines for injury-risk reduction3–5,10 were able to be satisfied on
each day of the preseason plan when they were defined as mathe-
matical constraints. The theoretical approach taken, based onmatch
demands and workload constraints, generated preseason plans
(Figures 1 and 3) comparable to those previously reported in
professional Australian football teams (mean total distance =
314–411 km, mean total SD = 2.7–8.9 km).3 This research extends
the approach of Schaefer et al13 by including constraints based on

injury-risk factors and putting the approach in a sport-specific
context.

Choice of Optimization Objective

The choice of optimization objective influenced the distribution of
training sessions prescribed by the model (Figure 2). The generated
plans were generally similar in how they progressed loads until the
latter stages of the preseason, prior to the first competitive match
(Figure 3; days 112–125). Maximization of projected performance
with a Banister model (objective B) was achieved by reducing
training frequency leading into competitive matches. This reduc-
tion allows for the fatigue component of the Banister model to
decay toward zero,1 maximizing the projected fitness level. This
aligns with previous theoretical results from Fitz-Clarke et al,8

where a taper before competition maximized projected perfor-
mance. Maximizing total preseason volume (objective A) was

A B

Figure 2 — Distribution of session loads in optimal preseason plans for (a) distance and (b) sprint distance (SD). Objective A is to maximize
total preseason load; objective B is to maximize Banister-projected performance at round 1 (off-season chronic loads: 14 km/wk distance and
150 m/wk SD).

A B

C D

Figure 3 — Computer-generated optimal preseason training plans for (a) distance under objective A, (b) distance under objective B, (c) sprint distance
(SD) under objective A, and (d) SD under objective B. Objective A is to maximize total preseason load; Objective B is to maximize Banister-projected
performance at round 1 (off-season chronic loads: 14 km/wk distance and 150 m/wk SD).
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accomplished by prescribing more frequent moderately sized ses-
sions. More frequent training is a way to accumulate more load
(the goal of objective A) without breaking acute:chronic work-
load constraints. No taper is included since objective A does not
include consideration for fatigue accumulation, suggesting that a
Banister-model objective may be more appropriate.

Effect of Off-Season Chronic Load

Modifying the off-season chronic-load parameter changed the
amounts of prescribed training and projected performance in the
generated plans (Figure 1). A higher off-season chronic load
(21 km/wk for distance or 225 m/wk for SD) enabled the optimizer
to prescribe larger “safe” training volumes (Figure 1[a] and 1[c])
and achieve higher projected performance (Figure 1[b] and 1[d]).
These findings highlight the potential benefit of prescribing and
adhering to training plans during off-season periods to promote
follow-on positive effects. The importance of high chronic work-
loads aligns with the findings of Malone et al11 that they may be
protective against injury in Gaelic football.

Ability to Customize Plans

The methodological framework outlined in this study allows for
customization and individualization of training plans depending
on the preferences of the practitioner and needs of the athlete and
team. For example, more aggressive or conservative training plans
could be generated by simply modifying the workload-ratio
constraint, lowering it to 1.1 for a safer plan or raising it to 1.5
if the user is willing to accept higher injury risk.5 Individualized
planning could be incorporated by changing the off-season
chronic-load parameter or cumulative-load constraint. For exam-
ple, first-year players or athletes returning from injury could be
assigned a lower off-season chronic load or a lower acceptable
cumulative load—and have their plans represent this lower load
capacity.

The framework also allows for customization to suit different
team objectives. For example, a team may want to employ a game
style that requires a higher amount of SD. This could be incorpo-
rated into plans by increasing the match-demand constraint for SD
from 268 to 350 m (or whatever the desired level may be). The time
frames used in this study (125-d preseason with practice matches
on days 98, 104, and 112) can be modified for teams or sports with
different schedules. This could be accomplished by moving the
timing of the match-demand constraints (eg, for a 30-d-shorter
preseason: w95 = 13,200 and w68,74,82 = 11,220).

The optimization objective can also be adapted to suit different
goals. Instead of maximizing projected performance (peaking) at
round 1, the user may prefer to have athletes peaking for each
preseason practice match, as well, or a match later in the season. A
plan with this goal could be generated by changing the objective
function to be the sum of Banister-projected performance on each
practice-match day or on a day later in the season.

In general, the optimization approach described can be used
to generate training plans that consider a number of combinations
of the modifications described herein, allowing for rapid trouble-
shooting of different training strategies.

Limitations

This study presented a method for optimized training-plan gen-
eration in the context of a standard Australian football preseason.
As such, the parameters considered were specific to the cohort

of interest. A full evaluation of the effects of varying model
parameters to reflect different possible training philosophies and
timelines was considered beyond the scope of this study. The intent
of the study was to determine if training plans could be generated
using an optimization approach. As such, there were no data
available on the implementation of a generated plan to allow for
comparison between planned and actual loads. Future studies are
needed to evaluate the effects of an optimization approach on injury
occurrence and performance.

A Banister impulse-response model was used to model athlete
responses to training loads.1 A discussion of the merits of using a
Banister model for team-sport athletes was considered beyond the
scope of this study, and it is possible that other models may bemore
appropriate.

Practical Applications
The methodology outlined in this report provides an adaptable
framework for physical-preparation staff to quickly create athletic-
training plans that objectively optimize training goals while satis-
fying injury-risk and life-balance constraints (ie, days off) without
exposing their plans to subjective bias. Practical applications
include individualized training-plan design and adaptability to
changing training objectives. The framework described also pro-
vides theoretical scope for testing different training strategies and
assumptions (eg, how much more total training volume could
athletes attain if acute:chronic workload-ratio limits are increased
to 1.5, or are athletes able to reach match fitness levels if their
off-season chronic loads are reduced by 50%?).

Conclusion
Feasible preseason training plans for Australian football can be
automatically generated using an optimization approach that max-
imizes performance while being constrained by injury-risk guide-
lines. Training plans generated for athletes who enter preseason
with higher off-season chronic loads prescribed larger total train-
ing volumes. This allowed larger projected performance improve-
ments while theoretically avoiding exposure to high-risk training
patterns. The methodology described allows for individualized
training-plan design and the ability to adapt to changing training
objectives.
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